Abstract:Cache side channel attacks are a sophisticated and persistent threat that exploit vulnerabilities in modern processors to extract sensitive information. These attacks leverage weaknesses in shared computational resources, particularly the last level cache, to infer patterns in data access and execution flows, often bypassing traditional security defenses. Such attacks are especially dangerous as they can be executed remotely without requiring physical access to the victim's device. This study focuses on a specific class of these threats: fingerprinting attacks, where an adversary monitors and analyzes the behavior of co-located processes via cache side channels. This can potentially reveal confidential information, such as encryption keys or user activity patterns. A comprehensive threat model illustrates how attackers sharing computational resources with target systems exploit these side channels to compromise sensitive data. To mitigate such risks, a hybrid deep learning model is proposed for detecting cache side channel attacks. Its performance is compared with five widely used deep learning models: Multi-Layer Perceptron, Convolutional Neural Network, Simple Recurrent Neural Network, Long Short-Term Memory, and Gated Recurrent Unit. The experimental results demonstrate that the hybrid model achieves a detection rate of up to 99.96%. These findings highlight the limitations of existing models, the need for enhanced defensive mechanisms, and directions for future research to secure sensitive data against evolving side channel threats.
Abstract:As short text data in native languages like Hindi increasingly appear in modern media, robust methods for topic modeling on such data have gained importance. This study investigates the performance of BERTopic in modeling Hindi short texts, an area that has been under-explored in existing research. Using contextual embeddings, BERTopic can capture semantic relationships in data, making it potentially more effective than traditional models, especially for short and diverse texts. We evaluate BERTopic using 6 different document embedding models and compare its performance against 8 established topic modeling techniques, such as Latent Dirichlet Allocation (LDA), Non-negative Matrix Factorization (NMF), Latent Semantic Indexing (LSI), Additive Regularization of Topic Models (ARTM), Probabilistic Latent Semantic Analysis (PLSA), Embedded Topic Model (ETM), Combined Topic Model (CTM), and Top2Vec. The models are assessed using coherence scores across a range of topic counts. Our results reveal that BERTopic consistently outperforms other models in capturing coherent topics from short Hindi texts.