Abstract:In this paper, we analyze the feasibility of applying few-shot learning to speech emotion recognition task (SER). The current speech emotion recognition models work exceptionally well but fail when then input is multilingual. Moreover, when training such models, the models' performance is suitable only when the training corpus is vast. This availability of a big training corpus is a significant problem when choosing a language that is not much popular or obscure. We attempt to solve this challenge of multilingualism and lack of available data by turning this problem into a few-shot learning problem. We suggest relaxing the assumption that all N classes in an N-way K-shot problem be new and define an N+F way problem where N and F are the number of emotion classes and predefined fixed classes, respectively. We propose this modification to the Model-Agnostic MetaLearning (MAML) algorithm to solve the problem and call this new model F-MAML. This modification performs better than the original MAML and outperforms on EmoFilm dataset.
Abstract:Class imbalance is a challenging issue in practical classification problems for deep learning models as well as for traditional models. Traditionally successful countermeasures such as synthetic over-sampling have had limited success with complex, structured data handled by deep learning models. In this work, we propose to use a Generative Adversarial Network (GAN) equipped with a generator network G, a discriminator network D and a classifier network C to remove the class-imbalance in visual data sets. The generator network is initialized with auto-encoder to make it stable. The discriminator D ensures that G adheres to class distribution of imbalanced class. In conventional methods, where Generator G competes with discriminator D in a min-max game, we propose to further add an additional classifier network to the original network. Now, the generator network tries to compete in a min-max game with Discriminator as well as the new classifier that we have introduced. An additional condition is enforced on generator network G to produce points in the convex hull of desired imbalanced class. Further the contention of adversarial game with classifier C, pushes conditional distribution learned by G towards the periphery of the respective class, compensating the problem of class imbalance. Experimental evidence shows that this initialization results in stable training of the network. We achieve state of the art performance on extreme visual classification task on the FashionMNIST, MNIST, SVHN, ExDark, MVTec Anomaly Detection dataset, Chest X-Ray dataset and others.