Abstract:Surrogate models are often used as computationally efficient approximations to complex simulation models, enabling tasks such as solving inverse problems, sensitivity analysis, and probabilistic forward predictions, which would otherwise be computationally infeasible. During training, surrogate parameters are fitted such that the surrogate reproduces the simulation model's outputs as closely as possible. However, the simulation model itself is merely a simplification of the real-world system, often missing relevant processes or suffering from misspecifications e.g., in inputs or boundary conditions. Hints about these might be captured in real-world measurement data, and yet, we typically ignore those hints during surrogate building. In this paper, we propose two novel probabilistic approaches to integrate simulation data and real-world measurement data during surrogate training. The first method trains separate surrogate models for each data source and combines their predictive distributions, while the second incorporates both data sources by training a single surrogate. We show the conceptual differences and benefits of the two approaches through both synthetic and real-world case studies. The results demonstrate the potential of these methods to improve predictive accuracy, predictive coverage, and to diagnose problems in the underlying simulation model. These insights can improve system understanding and future model development.
Abstract:Surrogate models are statistical or conceptual approximations for more complex simulation models. In this context, it is crucial to propagate the uncertainty induced by limited simulation budget and surrogate approximation error to predictions, inference, and subsequent decision-relevant quantities. However, quantifying and then propagating the uncertainty of surrogates is usually limited to special analytic cases or is otherwise computationally very expensive. In this paper, we propose a framework enabling a scalable, Bayesian approach to surrogate modeling with thorough uncertainty quantification, propagation, and validation. Specifically, we present three methods for Bayesian inference with surrogate models given measurement data. This is a task where the propagation of surrogate uncertainty is especially relevant, because failing to account for it may lead to biased and/or overconfident estimates of the parameters of interest. We showcase our approach in two detailed case studies for both linear and nonlinear modeling scenarios. Uncertainty propagation in surrogate models enables more reliable and safe approximation of expensive simulators and will therefore be useful in various fields of applications.