Abstract:Ant Colony Optimization (ACO) is a very popular metaheuristic for solving computationally hard combinatorial optimization problems. Runtime analysis of ACO with respect to various pseudo-boolean functions and different graph based combinatorial optimization problems has been taken up in recent years. In this paper, we investigate the runtime behavior of an MMAS*(Max-Min Ant System) ACO algorithm on some well known hypergraph covering problems that are NP-Hard. In particular, we have addressed the Minimum Edge Cover problem, the Minimum Vertex Cover problem and the Maximum Weak- Independent Set problem. The influence of pheromone values and heuristic information on the running time is analysed. The results indicate that the heuristic information has greater impact towards improving the expected optimization time as compared to pheromone values. For certain instances of hypergraphs, we show that the MMAS* algorithm gives a constant order expected optimization time when the dominance of heuristic information is suitably increased.
Abstract:Differential evolution (DE) is a population based evolutionary algorithm widely used for solving multidimensional global optimization problems over continuous spaces. However, the design of its operators makes it unsuitable for many real-life constrained combinatorial optimization problems which operate on binary space. On the other hand, the quantum inspired evolutionary algorithm (QEA) is very well suitable for handling such problems by applying several quantum computing techniques such as Q-bit representation and rotation gate operator, etc. This paper extends the concept of differential operators with adaptive parameter control to the quantum paradigm and proposes the adaptive quantum-inspired differential evolution algorithm (AQDE). The performance of AQDE is found to be significantly superior as compared to QEA and a discrete version of DE on the standard 0-1 knapsack problem for all the considered test cases.