Abstract:In the following report we propose pipelines for Goodness of Pronunciation (GoP) computation solving OOV problem at testing time using Vocab/Lexicon expansion techniques. The pipeline uses different components of ASR system to quantify accent and automatically evaluate them as scores. We use the posteriors of an ASR model trained on native English speech, along with the phone level boundaries to obtain phone level pronunciation scores. We used this as a baseline pipeline and implemented methods to remove UNK and SPN phonemes in the GoP output by building three pipelines. The Online, Offline and Hybrid pipeline which returns the scores but also can prevent unknown words in the final output. The Online method is based per utterance, Offline method pre-incorporates a set of OOV words for a given data set and the Hybrid method combines the above two ideas to expand the lexicon as well work per utterance. We further provide utilities such as the Phoneme to posterior mappings, GoP scores of each utterance as a vector, and Word boundaries used in the GoP pipeline for use in future research.
Abstract:One important feature of complex systems are problem domains that have many local minima and substructure. Biological systems manage these local minima by switching between different subsystems depending on their environmental or developmental context. Genetic Algorithms (GA) can mimic this switching property as well as provide a means to overcome problem domain complexity. However, standard GA requires additional operators that will allow for large-scale exploration in a stochastic manner. Gradient-free heuristic search techniques are suitable for providing an optimal solution in the discrete domain to such single objective optimization tasks, particularly compared to gradient based methods which are noticeably slower. To do this, the authors turn to an optimization problem from the flight scheduling domain. The authors compare the performance of such common gradient-free heuristic search algorithms and propose variants of GAs which perform well over our problem and across all benchmarks. The Iterated Chaining (IC) method is also introduced, building upon traditional chaining techniques by triggering multiple local searches instead of the singular action of a mutation operator. The authors will show that the use of multiple local searches can improve performance on local stochastic searches, providing ample opportunity for application to a host of other problem domains.