Abstract:Marine vessel re-identification technology is an important component of intelligent shipping systems and an important part of the visual perception tasks required for marine surveillance. However, unlike the situation on land, the maritime environment is complex and variable with fewer samples, and it is more difficult to perform vessel re-identification at sea. Therefore, this paper proposes a transfer dynamic alignment algorithm and simulates the swaying situation of vessels at sea, using a well-camouflaged and similar warship as the test target to improve the recognition difficulty and thus cope with the impact caused by complex sea conditions, and discusses the effect of different types of vessels as transfer objects. The experimental results show that the improved algorithm improves the mean average accuracy (mAP) by 10.2% and the first hit rate (Rank1) by 4.9% on average.
Abstract:The problem of overlapping occlusion in target recognition has been a difficult research problem, and the situation of mutual occlusion of ship targets in narrow waters still exists. In this paper, an improved mosaic data enhancement method is proposed, which optimizes the reading method of the data set, strengthens the learning ability of the detection algorithm for local features, improves the recognition accuracy of overlapping targets while keeping the test speed unchanged, reduces the decay rate of recognition ability under different resolutions, and strengthens the robustness of the algorithm. The real test experiments prove that, relative to the original algorithm, the improved algorithm improves the recognition accuracy of overlapping targets by 2.5%, reduces the target loss time by 17%, and improves the recognition stability under different video resolutions by 27.01%.