Abstract:Autism Spectrum Disorder (ASD) is a chronic neurodevelopmental disorder symptoms of which includes repetitive behaviour and lack of social and communication skills. Even though these symptoms can be seen very clearly in social but a large number of individuals with ASD remain undiagnosed. In this paper, we worked on a methodology for the detection of ASD from a 3-dimensional walking video dataset, utilizing supervised machine learning (ML) classification algorithms and nature-inspired optimization algorithms for feature extraction from the dataset. The proposed methodology involves the classification of ASD using a supervised ML classification algorithm and extracting important and relevant features from the dataset using nature-inspired optimization algorithms. We also included the ranking coefficients to find the initial leading particle. This selection of particle significantly reduces the computation time and hence, improves the total efficiency and accuracy for ASD detection. To evaluate the efficiency of the proposed methodology, we deployed various combinationsalgorithms of classification algorithm and nature-inspired algorithms resulting in an outstanding classification accuracy of $100\%$ using the random forest classification algorithm and gravitational search algorithm for feature selection. The application of the proposed methodology with different datasets would enhance the robustness and generalizability of the proposed methodology. Due to high accuracy and less total computation time, the proposed methodology will offer a significant contribution to the medical and academic fields, providing a foundation for future research and advancements in ASD diagnosis.
Abstract:Nonlinear mathematical models introduce the relation between various physical and biological interactions present in nature. One of the most famous models is the Lotka-Volterra model which defined the interaction between predator and prey species present in nature. However, predators, scavengers, and prey populations coexist in a natural system where scavengers can additionally rely on the dead bodies of predators present in the system. Keeping this in mind, the formulation and simulation of the predator prey scavenger model is introduced in this paper. For the predation response, respective prey species are assumed to have Holling's functional response of type III. The proposed model is tested for various simulations and is found to be showing satisfactory results in different scenarios. After simulations, the American forest dataset is taken for parameter estimation which imitates the real-world case. For parameter estimation, a physics-informed deep neural network is used with the Adam backpropagation method which prevents the avalanche effect in trainable parameters updation. For neural networks, mean square error and physics-informed informed error are considered. After the neural network, the hence-found parameters are fine-tuned using the Broyden-Fletcher-Goldfarb-Shanno algorithm. Finally, the hence-found parameters using a natural dataset are tested for stability using Jacobian stability analysis. Future research work includes minimization of error induced by parameters, bifurcation analysis, and sensitivity analysis of the parameters.