Abstract:Gaze estimation, the task of predicting where an individual is looking, is a critical task with direct applications in areas such as human-computer interaction and virtual reality. Estimating the direction of looking in unconstrained environments is difficult, due to the many factors that can obscure the face and eye regions. In this work we propose CrossGaze, a strong baseline for gaze estimation, that leverages recent developments in computer vision architectures and attention-based modules. Unlike previous approaches, our method does not require a specialised architecture, utilizing already established models that we integrate in our architecture and adapt for the task of 3D gaze estimation. This approach allows for seamless updates to the architecture as any module can be replaced with more powerful feature extractors. On the Gaze360 benchmark, our model surpasses several state-of-the-art methods, achieving a mean angular error of 9.94 degrees. Our proposed model serves as a strong foundation for future research and development in gaze estimation, paving the way for practical and accurate gaze prediction in real-world scenarios.
Abstract:Gait, an unobtrusive biometric, is valued for its capability to identify individuals at a distance, across external outfits and environmental conditions. This study challenges the prevailing assumption that vision-based gait recognition, in particular skeleton-based gait recognition, relies primarily on motion patterns, revealing a significant role of the implicit anthropometric information encoded in the walking sequence. We show through a comparative analysis that removing height information leads to notable performance degradation across three models and two benchmarks (CASIA-B and GREW). Furthermore, we propose a spatial transformer model processing individual poses, disregarding any temporal information, which achieves unreasonably good accuracy, emphasizing the bias towards appearance information and indicating spurious correlations in existing benchmarks. These findings underscore the need for a nuanced understanding of the interplay between motion and appearance in vision-based gait recognition, prompting a reevaluation of the methodological assumptions in this field. Our experiments indicate that "in-the-wild" datasets are less prone to spurious correlations, prompting the need for more diverse and large scale datasets for advancing the field.