Abstract:Examining locomotion has improved our basic understanding of motor control and aided in treating motor impairment. Mice and rats are premier models of human disease and increasingly the model systems of choice for basic neuroscience. High frame rates (250 Hz) are needed to quantify the kinematics of these running rodents. Manual tracking, especially for multiple markers, becomes time-consuming and impossible for large sample sizes. Therefore, the need for automatic segmentation of these markers has grown in recent years. We propose two methods to segment and track these markers: first, using SLIC superpixels segmentation with a tracker based on position, speed, shape, and color information of the segmented region in the previous frame; second, using a thresholding on hue channel following up with the same tracker. The comparison showed that the SLIC superpixels method was superior because the segmentation was more reliable and based on both color and spatial information.
Abstract:Examining locomotion has improved our basic understanding of motor control and aided in treating motor impairment. Mice and rats are the model system of choice for basic neuroscience studies of human disease. High frame rates are needed to quantify the kinematics of running rodents, due to their high stride frequency. Manual tracking, especially for multiple body landmarks, becomes extremely time-consuming. To overcome these limitations, we proposed the use of superpixels based image segmentation as superpixels utilized both spatial and color information for segmentation. We segmented some parts of body and tested the success of segmentation as a function of color space and SLIC segment size. We used a simple merging function to connect the segmented regions considered as neighbor and having the same intensity value range. In addition, 28 features were extracted, and t-SNE was used to demonstrate how much the methods are capable to differentiate the regions. Finally, we compared the segmented regions to a manually outlined region. The results showed for segmentation, using the RGB image was slightly better compared to the hue channel. For merg- ing and classification, however, the hue representation was better as it captures the relevant color information in a single channel.
Abstract:Examining locomotion has improved our basic understanding of motor control and aided in treating motor impairment. Mice and rats are premier models of human disease and increasingly the model systems of choice for basic neuroscience. High frame rates (250 Hz) are needed to quantify the kinematics of these running rodents. Manual tracking, especially for multiple markers, becomes time-consuming and impossible for large sample sizes. Therefore, the need for automatic segmentation of these markers has grown in recent years. Here, we address this need by presenting a method to segment the markers using the SLIC superpixel method. The 2D coordinates on the image plane are projected to a 3D domain using direct linear transform (DLT) and a 3D Kalman filter has been used to predict the position of markers based on the speed and position of markers from the previous frames. Finally, a probabilistic function is used to find the best match among superpixels. The method is evaluated for different difficulties for tracking of the markers and it achieves 95% correct labeling of markers.