Abstract:The AI we use is powerful, and its power is increasing rapidly. If this powerful AI is to serve the needs of consumers, voters, and decision makers, then it is imperative that the AI is accountable. In general, an agent is accountable to a forum if the forum can request information from the agent about its actions, if the forum and the agent can discuss this information, and if the forum can sanction the agent. Unfortunately, in too many cases today's AI is not accountable -- we cannot question it, enter into a discussion with it, let alone sanction it. In this chapter we relate the general definition of accountability to AI, we illustrate what it means for AI to be accountable and unaccountable, and we explore approaches that can improve our chances of living in a world where all AI is accountable to those who are affected by it.




Abstract:The growing availability of generative AI technologies such as large language models (LLMs) has significant implications for creative work. This paper explores twofold aspects of integrating LLMs into the creative process - the divergence stage of idea generation, and the convergence stage of evaluation and selection of ideas. We devised a collaborative group-AI Brainwriting ideation framework, which incorporated an LLM as an enhancement into the group ideation process, and evaluated the idea generation process and the resulted solution space. To assess the potential of using LLMs in the idea evaluation process, we design an evaluation engine and compared it to idea ratings assigned by three expert and six novice evaluators. Our findings suggest that integrating LLM in Brainwriting could enhance both the ideation process and its outcome. We also provide evidence that LLMs can support idea evaluation. We conclude by discussing implications for HCI education and practice.