Abstract:The concern that Artificial Intelligence (AI) and Machine Learning (ML) are entering a "reproducibility crisis" has spurred significant research in the past few years. Yet with each paper, it is often unclear what someone means by "reproducibility". Our work attempts to clarify the scope of "reproducibility" as displayed by the community at large. In doing so, we propose to refine the research to eight general topic areas. In this light, we see that each of these areas contains many works that do not advertise themselves as being about "reproducibility", in part because they go back decades before the matter came to broader attention.
Abstract:The robustness of modern machine learning (ML) models has become an increasing concern within the community. The ability to subvert a model into making errant predictions using seemingly inconsequential changes to input is startling, as is our lack of success in building models robust to this concern. Existing research shows progress, but current mitigations come with a high cost and simultaneously reduce the model's accuracy. However, such trade-offs may not be necessary when other design choices could subvert the risk. In this survey we review the current literature on attacks and their real-world occurrences, or limited evidence thereof, to critically evaluate the real-world risks of adversarial machine learning (AML) for the average entity. This is done with an eye toward how one would then mitigate these attacks in practice, the risks for production deployment, and how those risks could be managed. In doing so we elucidate that many AML threats do not warrant the cost and trade-offs of robustness due to a low likelihood of attack or availability of superior non-ML mitigations. Our analysis also recommends cases where an actor should be concerned about AML to the degree where robust ML models are necessary for a complete deployment.
Abstract:As reproducibility becomes a greater concern, conferences have largely converged to a strategy of asking reviewers to indicate whether code was attached to a submission. This is part of a larger trend of taking action based on assumed ideals, without studying if those actions will yield the desired outcome. Our argument is that this focus on code for replication is misguided if we want to improve the state of reproducible research. This focus can be harmful -- we should not force code to be submitted. There is a lack of evidence for effective actions taken by conferences to encourage and reward reproducibility. We argue that venues must take more action to advance reproducible machine learning research today.