Abstract:This paper introduces the first dataset of satellite images labeled with forage quality by on-the-ground experts and provides proof of concept for applying computer vision methods to index-based drought insurance. We also present the results of a collaborative benchmark tool used to crowdsource an accurate machine learning model on the dataset. Our methods significantly outperform the existing technology for an insurance program in Northern Kenya, suggesting that a computer vision-based approach could substantially benefit pastoralists, whose exposure to droughts is severe and worsening with climate change.