Abstract:In this work we investigate the application of advanced object detection techniques to digital numismatics, focussing on the analysis of historical coins. Leveraging models such as Contrastive Language-Image Pre-training (CLIP), we develop a flexible framework for identifying and classifying specific coin features using both image and textual descriptions. By examining two distinct datasets, modern Russian coins featuring intricate "Saint George and the Dragon" designs and degraded 1st millennium AD Southeast Asian coins bearing Hindu-Buddhist symbols, we evaluate the efficacy of different detection algorithms in search and classification tasks. Our results demonstrate the superior performance of larger CLIP models in detecting complex imagery, while traditional methods excel in identifying simple geometric patterns. Additionally, we propose a statistical calibration mechanism to enhance the reliability of similarity scores in low-quality datasets. This work highlights the transformative potential of integrating state-of-the-art object detection into digital numismatics, enabling more scalable, precise, and efficient analysis of historical artifacts. These advancements pave the way for new methodologies in cultural heritage research, artefact provenance studies, and the detection of forgeries.
Abstract:Contemporary Artificial Intelligence (AI) and Machine Learning (ML) research places a significant emphasis on transfer learning, showcasing its transformative potential in enhancing model performance across diverse domains. This paper examines the efficiency and effectiveness of transfer learning in the context of wildfire detection. Three purpose-built models -- Visual Geometry Group (VGG)-7, VGG-10, and Convolutional Neural Network (CNN)-Support Vector Machine(SVM) CNN-SVM -- are rigorously compared with three pretrained models -- VGG-16, VGG-19, and Residual Neural Network (ResNet) ResNet101. We trained and evaluated these models using a dataset that captures the complexities of wildfires, incorporating variables such as varying lighting conditions, time of day, and diverse terrains. The objective is to discern how transfer learning performs against models trained from scratch in addressing the intricacies of the wildfire detection problem. By assessing the performance metrics, including accuracy, precision, recall, and F1 score, a comprehensive understanding of the advantages and disadvantages of transfer learning in this specific domain is obtained. This study contributes valuable insights to the ongoing discourse, guiding future directions in AI and ML research. Keywords: Wildfire prediction, deep learning, machine learning fire, detection