Abstract:This paper presents a new method for anomaly detection in automated systems with time and compute sensitive requirements, such as autonomous driving, with unparalleled efficiency. As systems like autonomous driving become increasingly popular, ensuring their safety has become more important than ever. Therefore, this paper focuses on how to quickly and effectively detect various anomalies in the aforementioned systems, with the goal of making them safer and more effective. Many detection systems have been developed with great success under spatial contexts; however, there is still significant room for improvement when it comes to temporal context. While there is substantial work regarding this task, there is minimal work done regarding the efficiency of models and their ability to be applied to scenarios that require real-time inference, i.e., autonomous driving where anomalies need to be detected the moment they are within view. To address this gap, we propose STEAD (Spatio-Temporal Efficient Anomaly Detection), whose backbone is developed using (2+1)D Convolutions and Performer Linear Attention, which ensures computational efficiency without sacrificing performance. When tested on the UCF-Crime benchmark, our base model achieves an AUC of 91.34%, outperforming the previous state-of-the-art, and our fast version achieves an AUC of 88.87%, while having 99.70% less parameters and outperforming the previous state-of-the-art as well. The code and pretrained models are made publicly available at https://github.com/agao8/STEAD