Abstract:This paper proposes a path planning algorithm for multi-agent unmanned aircraft systems (UASs) to autonomously cover a search area, while considering obstacle avoidance, as well as the capabilities and energy consumption of the employed unmanned aerial vehicles. The path planning is optimized in terms of energy efficiency to prefer low energy-consuming maneuvers. In scenarios where a UAS is low on energy, it autonomously returns to its initial position for a safe landing, thus preventing potential battery damage. To accomplish this, an energy-aware multicopter model is integrated into a path planning algorithm based on model predictive control and mixed integer linear programming. Besides factoring in energy consumption, the planning is improved by dynamically defining feasible regions for each UAS to prevent obstacle corner-cutting or over-jumping.
Abstract:Unmanned aerial vehicles (UAVs), especially multicopters, have recently gained popularity for use in surveillance, monitoring, inspection, and search and rescue missions. Their maneuverability and ability to operate in confined spaces make them particularly useful in cluttered environments. For advanced control and mission planning applications, accurate and resource-efficient modeling of UAVs and their capabilities is essential. This study presents a modular approach to multicopter modeling that considers vehicle dynamics, energy consumption, and sensor integration. The power train model includes detailed descriptions of key components such as the lithium-ion battery, electronic speed controllers, and brushless DC motors. Their models are validated with real test flight data. In addition, sensor models, including LiDAR and cameras, are integrated to describe the equipment often used in surveillance and monitoring missions. The individual models are combined into an energy-aware multicopter model, which provide the basis for a companion study on path planning for unmanned aircaft system (UAS) swarms performing search and rescue missions in cluttered and dynamic environments. The flexible modeling approach enables easy description of different UAVs in a heterogeneous UAS swarm, allowing for energy-efficient operations and autonomous decision making for a reliable mission performance.