Abstract:Forensic science heavily relies on analyzing latent fingerprints, which are crucial for criminal investigations. However, various challenges, such as background noise, overlapping prints, and contamination, make the identification process difficult. Moreover, limited access to real crime scene and laboratory-generated databases hinders the development of efficient recognition algorithms. This study aims to develop a fast method, which we call ULPrint, to enhance various latent fingerprint types, including those obtained from real crime scenes and laboratory-created samples, to boost fingerprint recognition system performance. In closed-set identification accuracy experiments, the enhanced image was able to improve the performance of the MSU-AFIS from 61.56\% to 75.19\% in the NIST SD27 database, from 67.63\% to 77.02\% in the MSP Latent database, and from 46.90\% to 52.12\% in the NIST SD302 database. Our contributions include (1) the development of a two-step latent fingerprint enhancement method that combines Ridge Segmentation with UNet and Mix Visual Transformer (MiT) SegFormer-B5 encoder architecture, (2) the implementation of multiple dilated convolutions in the UNet architecture to capture intricate, non-local patterns better and enhance ridge segmentation, and (3) the guided blending of the predicted ridge mask with the latent fingerprint. This novel approach, ULPrint, streamlines the enhancement process, addressing challenges across diverse latent fingerprint types to improve forensic investigations and criminal justice outcomes.
Abstract:Given a full fingerprint image (rolled or slap), we present CycleGAN models to generate multiple latent impressions of the same identity as the full print. Our models can control the degree of distortion, noise, blurriness and occlusion in the generated latent print images to obtain Good, Bad and Ugly latent image categories as introduced in the NIST SD27 latent database. The contributions of our work are twofold: (i) demonstrate the similarity of synthetically generated latent fingerprint images to crime scene latents in NIST SD27 and MSP databases as evaluated by the NIST NFIQ 2 quality measure and ROC curves obtained by a SOTA fingerprint matcher, and (ii) use of synthetic latents to augment small-size latent training databases in the public domain to improve the performance of DeepPrint, a SOTA fingerprint matcher designed for rolled to rolled fingerprint matching on three latent databases (NIST SD27, NIST SD302, and IIITD-SLF). As an example, with synthetic latent data augmentation, the Rank-1 retrieval performance of DeepPrint is improved from 15.50% to 29.07% on challenging NIST SD27 latent database. Our approach for generating synthetic latent fingerprints can be used to improve the recognition performance of any latent matcher and its individual components (e.g., enhancement, segmentation and feature extraction).
Abstract:This paper aims to present how the application of Natural Language Processing (NLP) and data augmentation techniques can improve the performance of a neural network for better detection of fake news in the Portuguese language. Fake news is one of the main controversies during the growth of the internet in the last decade. Verifying what is fact and what is false has proven to be a difficult task, while the dissemination of false news is much faster, which leads to the need for the creation of tools that, automated, assist in the process of verification of what is fact and what is false. In order to bring a solution, an experiment was developed with neural network using news, real and fake, which were never seen by artificial intelligence (AI). There was a significant performance in the news classification after the application of the mentioned techniques.