Abstract:Federated analytics has many applications in edge computing, its use can lead to better decision making for service provision, product development, and user experience. We propose a Bayesian approach to trend detection in which the probability of a keyword being trendy, given a dataset, is computed via Bayes' Theorem; the probability of a dataset, given that a keyword is trendy, is computed through secure aggregation of such conditional probabilities over local datasets of users. We propose a protocol, named SAFE, for Bayesian federated analytics that offers sufficient privacy for production grade use cases and reduces the computational burden of users and an aggregator. We illustrate this approach with a trend detection experiment and discuss how this approach could be extended further to make it production-ready.
Abstract:With increasing usage of deep learning algorithms in many application, new research questions related to privacy and adversarial attacks are emerging. However, the deep learning algorithm improvement needs more and more data to be shared within research community. Methodologies like federated learning, differential privacy, additive secret sharing provides a way to train machine learning models on edge without moving the data from the edge. However, it is very computationally intensive and prone to adversarial attacks. Therefore, this work introduces a privacy preserving FedCollabNN framework for training machine learning models at edge, which is computationally efficient and robust against adversarial attacks. The simulation results using MNIST dataset indicates the effectiveness of the framework.