Abstract:Three state-of-the-art adaptive population control strategies (PCS) are theoretically and empirically investigated for a multi-recombinative, cumulative step-size adaptation Evolution Strategy $(\mu/\mu_I, \lambda)$-CSA-ES. First, scaling properties for the generation number and mutation strength rescaling are derived on the sphere in the limit of large population sizes. Then, the adaptation properties of three standard CSA-variants are studied as a function of the population size and dimensionality, and compared to the predicted scaling results. Thereafter, three PCS are implemented along the CSA-ES and studied on a test bed of sphere, random, and Rastrigin functions. The CSA-adaptation properties significantly influence the performance of the PCS, which is shown in more detail. Given the test bed, well-performing parameter sets (in terms of scaling, efficiency, and success rate) for both the CSA- and PCS-subroutines are identified.
Abstract:The mutation strength adaptation properties of a multi-recombinative $(\mu/\mu_I, \lambda)$-ES are studied for isotropic mutations. To this end, standard implementations of cumulative step-size adaptation (CSA) and mutative self-adaptation ($\sigma$SA) are investigated experimentally and theoretically by assuming large population sizes ($\mu$) in relation to the search space dimensionality ($N$). The adaptation is characterized in terms of the scale-invariant mutation strength on the sphere in relation to its maximum achievable value for positive progress. %The results show how the different $\sigma$-adaptation variants behave as $\mu$ and $N$ are varied. Standard CSA-variants show notably different adaptation properties and progress rates on the sphere, becoming slower or faster as $\mu$ or $N$ are varied. This is shown by investigating common choices for the cumulation and damping parameters. Standard $\sigma$SA-variants (with default learning parameter settings) can achieve faster adaptation and larger progress rates compared to the CSA. However, it is shown how self-adaptation affects the progress rate levels negatively. Furthermore, differences regarding the adaptation and stability of $\sigma$SA with log-normal and normal mutation sampling are elaborated.