Abstract:In this research, a model is proposed to learn from event log and predict future events of a system. The proposed PEDF model learns based on events' sequences, durations, and extra features. The PEDF model is built by a network made of standard clusterers and classifiers, and it has high flexibility to update the model iteratively. The model requires to extract two sets of data from log files i.e., transition differences, and cumulative features. The model has one layer of memory which means that each transition is dependent on both the current event and the previous event. To evaluate the performance of the proposed model, it is compared to the Recurrent Neural Network and Sequential Prediction models, and it outperforms them. Since there is missing performance measure for event log prediction models, three measures are proposed.
Abstract:This paper introduces a device, algorithm and graphical user interface to obtain anthropometric measurements of foot. Presented device facilitates obtaining scale of image and image processing by taking one image from side foot and underfoot simultaneously. Introduced image processing algorithm minimizes a noise criterion, which is suitable for object detection in single object images and outperforms famous image thresholding methods when lighting condition is poor. Performance of image-based method is compared to manual method. Image-based measurements of underfoot in average was 4mm less than actual measures. Mean absolute error of underfoot length was 1.6mm, however length obtained from side foot had 4.4mm mean absolute error. Furthermore, based on t-test and f-test results, no significant difference between manual and image-based anthropometry observed. In order to maintain anthropometry process performance in different situations user interface designed for handling changes in light conditions and altering speed of the algorithm.