Abstract:The rapid advancement of deepfake technologies, specifically designed to create incredibly lifelike facial imagery and video content, has ignited a remarkable level of interest and curiosity across many fields, including forensic analysis, cybersecurity and the innovative creation of digital characters. By harnessing the latest breakthroughs in deep learning methods, such as Generative Adversarial Networks, Variational Autoencoders, Few-Shot Learning Strategies, and Transformers, the outcomes achieved in generating deepfakes have been nothing short of astounding and transformative. Also, the ongoing evolution of detection technologies is being developed to counteract the potential for misuse associated with deepfakes, effectively addressing critical concerns that range from political manipulation to the dissemination of fake news and the ever-growing issue of cyberbullying. This comprehensive review paper meticulously investigates the most recent developments in deepfake generation and detection, including around 400 publications, providing an in-depth analysis of the cutting-edge innovations shaping this rapidly evolving landscape. Starting with a thorough examination of systematic literature review methodologies, we embark on a journey that delves into the complex technical intricacies inherent in the various techniques used for deepfake generation, comprehensively addressing the challenges faced, potential solutions available, and the nuanced details surrounding manipulation formulations. Subsequently, the paper is dedicated to accurately benchmarking leading approaches against prominent datasets, offering thorough assessments of the contributions that have significantly impacted these vital domains. Ultimately, we engage in a thoughtful discussion of the existing challenges, paving the way for continuous advancements in this critical and ever-dynamic study area.
Abstract:Over an extensive duration, administrators and clinicians have endeavoured to predict Emergency Department (ED) visits with precision, aiming to optimise resource distribution. Despite the proliferation of diverse AI-driven models tailored for precise prognostication, this task persists as a formidable challenge, besieged by constraints such as restrained generalisability, susceptibility to overfitting and underfitting, scalability issues, and complex fine-tuning hyper-parameters. In this study, we introduce a novel Meta-learning Gradient Booster (Meta-ED) approach for precisely forecasting daily ED visits and leveraging a comprehensive dataset of exogenous variables, including socio-demographic characteristics, healthcare service use, chronic diseases, diagnosis, and climate parameters spanning 23 years from Canberra Hospital in ACT, Australia. The proposed Meta-ED consists of four foundational learners-Catboost, Random Forest, Extra Tree, and lightGBoost-alongside a dependable top-level learner, Multi-Layer Perceptron (MLP), by combining the unique capabilities of varied base models (sub-learners). Our study assesses the efficacy of the Meta-ED model through an extensive comparative analysis involving 23 models. The evaluation outcomes reveal a notable superiority of Meta-ED over the other models in accuracy at 85.7% (95% CI ;85.4%, 86.0%) and across a spectrum of 10 evaluation metrics. Notably, when compared with prominent techniques, XGBoost, Random Forest (RF), AdaBoost, LightGBoost, and Extra Tree (ExT), Meta-ED showcases substantial accuracy enhancements of 58.6%, 106.3%, 22.3%, 7.0%, and 15.7%, respectively. Furthermore, incorporating weather-related features demonstrates a 3.25% improvement in the prediction accuracy of visitors' numbers. The encouraging outcomes of our study underscore Meta-ED as a foundation model for the precise prediction of daily ED visitors.