Abstract:Introduction: Machine learning (ML) has been extremely successful in identifying key features from high-dimensional datasets and executing complicated tasks with human expert levels of accuracy or greater. Methods: We summarize and critically evaluate current applications of ML in dementia research and highlight directions for future research. Results: We present an overview of ML algorithms most frequently used in dementia research and highlight future opportunities for the use of ML in clinical practice, experimental medicine, and clinical trials. We discuss issues of reproducibility, replicability and interpretability and how these impact the clinical applicability of dementia research. Finally, we give examples of how state-of-the-art methods, such as transfer learning, multi-task learning, and reinforcement learning, may be applied to overcome these issues and aid the translation of research to clinical practice in the future. Discussion: ML-based models hold great promise to advance our understanding of the underlying causes and pathological mechanisms of dementia.
Abstract:Background and Objective: It is commonly accepted that accurate monitoring of neurodegenerative diseases is crucial for effective disease management and delivery of medication and treatment. This research develops automatic clinical monitoring techniques for PD, following treatment, using the novel application of EAs. Specifically, the research question addressed was: Can accurate monitoring of PD be achieved using EAs on rs-fMRI data for patients prescribed Modafinil (typically prescribed for PD patients to relieve physical fatigue)? Methods: This research develops novel clinical monitoring tools using data from a controlled experiment where participants were administered Modafinil versus placebo, examining the novel application of EAs to both map and predict the functional connectivity in participants using rs-fMRI data. Specifically, CGP was used to classify DCM analysis and timeseries data. Results were validated with two other commonly used classification methods (ANN and SVM) and via k-fold cross-validation. Results: Findings revealed a maximum accuracy of 74.57% for CGP. Furthermore, CGP provided comparable performance accuracy relative to ANN and SVM. Nevertheless, EAs enable us to decode the classifier, in terms of understanding the data inputs that are used, more easily than in ANN and SVM. Conclusions: These findings underscore the applicability of both DCM analyses for classification and CGP as a novel classification technique for brain imaging data with medical implications for medication monitoring. Furthermore, classification of fMRI data for research typically involves statistical modelling techniques being often hypothesis driven, whereas EAs use data-driven explanatory modelling methods resulting in numerous benefits. DCM analysis is novel for classification and advantageous as it provides information on the causal links between different brain regions.
Abstract:Accurate early diagnosis and monitoring of neurodegenerative conditions is essential for effective disease management and delivery of medication and treatment. This research develops automatic methods for detecting brain imaging preclinical biomarkers for Parkinson's disease (PD) by considering the novel application of evolutionary algorithms. A fundamental novel element of this work is the use of evolutionary algorithms to both map and predict the functional connectivity in patients using resting state functional MRI data taken from the PPMI to identify PD progression biomarkers. Specifically, Cartesian Genetic Programming was used to classify DCM data as well as time-series data. The findings were validated using two other commonly used classification methods (Artificial Neural Networks and Support Vector Machines) and by employing k-fold cross-validation. Across DCM and time-series analyses, findings revealed maximum accuracies of 75.21% for early stage (prodromal) PD patients versus healthy controls, 85.87% for PD patients versus prodromal PD patients, and 92.09% for PD patients versus healthy controls. Prodromal PD patients were classified from healthy controls with high accuracy - this is notable and represents the key finding of this research since current methods of diagnosing prodromal PD have both low reliability and low accuracy. Furthermore, Cartesian Genetic Programming provided comparable performance accuracy relative to ANN and SVM. Evolutionary algorithms enable us to decode the classifier in terms of understanding the data inputs that are used, more easily than in ANN and SVM. Hence, these findings underscore the relevance of both DCM analyses for classification and CGP as a novel classification tool for brain imaging data with medical implications for disease diagnosis, particularly in early and asymptomatic stages.