Abstract:This paper studies Dictionary Learning problems wherein the learning task is distributed over a multi-agent network, modeled as a time-varying directed graph. This formulation is relevant, for instance, in Big Data scenarios where massive amounts of data are collected/stored in different locations (e.g., sensors, clouds) and aggregating and/or processing all data in a fusion center might be inefficient or unfeasible, due to resource limitations, communication overheads or privacy issues. We develop a unified decentralized algorithmic framework for this class of nonconvex problems, and we establish its asymptotic convergence to stationary solutions. The new method hinges on Successive Convex Approximation techniques, coupled with a decentralized tracking mechanism aiming at locally estimating the gradient of the smooth part of the sum-utility. To the best of our knowledge, this is the first provably convergent decentralized algorithm for Dictionary Learning and, more generally, bi-convex problems over (time-varying) (di)graphs.
Abstract:The paper studies distributed Dictionary Learning (DL) problems where the learning task is distributed over a multi-agent network with time-varying (nonsymmetric) connectivity. This formulation is relevant, for instance, in big-data scenarios where massive amounts of data are collected/stored in different spatial locations and it is unfeasible to aggregate and/or process all the data in a fusion center, due to resource limitations, communication overhead or privacy considerations. We develop a general distributed algorithmic framework for the (nonconvex) DL problem and establish its asymptotic convergence. The new method hinges on Successive Convex Approximation (SCA) techniques coupled with i) a gradient tracking mechanism instrumental to locally estimate the missing global information; and ii) a consensus step, as a mechanism to distribute the computations among the agents. To the best of our knowledge, this is the first distributed algorithm with provable convergence for the DL problem and, more in general, bi-convex optimization problems over (time-varying) directed graphs.