Abstract:Accurate prediction of public transit ridership is vital for efficient planning and management of transit in rapidly growing urban areas in Canada. Unexpected increases in passengers can cause overcrowded vehicles, longer boarding times, and service disruptions. Traditional time series models like ARIMA and SARIMA face limitations, particularly in short-term predictions and integration of spatial and temporal features. These models struggle with the dynamic nature of ridership patterns and often ignore spatial correlations between nearby stops. Deep Learning (DL) models present a promising alternative, demonstrating superior performance in short-term prediction tasks by effectively capturing both spatial and temporal features. However, challenges such as dynamic spatial feature extraction, balancing accuracy with computational efficiency, and ensuring scalability remain. This paper introduces DST-TransitNet, a hybrid DL model for system-wide station-level ridership prediction. This proposed model uses graph neural networks (GNN) and recurrent neural networks (RNN) to dynamically integrate the changing temporal and spatial correlations within the stations. The model also employs a precise time series decomposition framework to enhance accuracy and interpretability. Tested on Bogota's BRT system data, with three distinct social scenarios, DST-TransitNet outperformed state-of-the-art models in precision, efficiency and robustness. Meanwhile, it maintains stability over long prediction intervals, demonstrating practical applicability.
Abstract:Users of the transit system flood social networks daily with messages that contain valuable insights crucial for improving service quality. These posts help transit agencies quickly identify emerging issues. Parsing topics and sentiments is key to gaining comprehensive insights to foster service excellence. However, the volume of messages makes manual analysis impractical, and standard NLP techniques like Term Frequency-Inverse Document Frequency (TF-IDF) fall short in nuanced interpretation. Traditional sentiment analysis separates topics and sentiments before integrating them, often missing the interaction between them. This incremental approach complicates classification and reduces analytical productivity. To address these challenges, we propose a novel approach to extracting and analyzing transit-related information, including sentiment and sarcasm detection, identification of unusual system problems, and location data from social media. Our method employs Large Language Models (LLM), specifically Llama 3, for a streamlined analysis free from pre-established topic labels. To enhance the model's domain-specific knowledge, we utilize Retrieval-Augmented Generation (RAG), integrating external knowledge sources into the information extraction pipeline. We validated our method through extensive experiments comparing its performance with traditional NLP approaches on user tweet data from the real world transit system. Our results demonstrate the potential of LLMs to transform social media data analysis in the public transit domain, providing actionable insights and enhancing transit agencies' responsiveness by extracting a broader range of information.