Abstract:In this work, we present CleanUNet 2, a speech denoising model that combines the advantages of waveform denoiser and spectrogram denoiser and achieves the best of both worlds. CleanUNet 2 uses a two-stage framework inspired by popular speech synthesis methods that consist of a waveform model and a spectrogram model. Specifically, CleanUNet 2 builds upon CleanUNet, the state-of-the-art waveform denoiser, and further boosts its performance by taking predicted spectrograms from a spectrogram denoiser as the input. We demonstrate that CleanUNet 2 outperforms previous methods in terms of various objective and subjective evaluations.
Abstract:In this work, we present CleanUNet, a causal speech denoising model on the raw waveform. The proposed model is based on an encoder-decoder architecture combined with several self-attention blocks to refine its bottleneck representations, which is crucial to obtain good results. The model is optimized through a set of losses defined over both waveform and multi-resolution spectrograms. The proposed method outperforms the state-of-the-art models in terms of denoised speech quality from various objective and subjective evaluation metrics.