Abstract:Data summarization is the process of generating interpretable and representative subsets from a dataset. Existing time series summarization approaches often search for recurring subsequences using a set of manually devised similarity functions to summarize the data. However, such approaches are fraught with limitations stemming from an exhaustive search coupled with a heuristic definition of series similarity. Such approaches affect the diversity and comprehensiveness of the generated data summaries. To mitigate these limitations, we introduce an approach to time series summarization, called Time-to-Pattern (T2P), which aims to find a set of diverse patterns that together encode the most salient information, following the notion of minimum description length. T2P is implemented as a deep generative model that learns informative embeddings of the discrete time series on a latent space specifically designed to be interpretable. Our synthetic and real-world experiments reveal that T2P discovers informative patterns, even in noisy and complex settings. Furthermore, our results also showcase the improved performance of T2P over previous work in pattern diversity and processing scalability, which conclusively demonstrate the algorithm's effectiveness for time series summarization.
Abstract:Deep neural networks have introduced novel and useful tools to the machine learning community. Other types of classifiers can potentially make use of these tools as well to improve their performance and generality. This paper reviews the current state of the art for deep learning classifier technologies that are being used outside of deep neural networks. Non-network classifiers can employ many components found in deep neural network architectures. In this paper, we review the feature learning, optimization, and regularization methods that form a core of deep network technologies. We then survey non-neural network learning algorithms that make innovative use of these methods to improve classification. Because many opportunities and challenges still exist, we discuss directions that can be pursued to expand the area of deep learning for a variety of classification algorithms.
Abstract:Recognizing activities of daily living (ADLs) plays an essential role in analyzing human health and behavior. The widespread availability of sensors implanted in homes, smartphones, and smart watches have engendered collection of big datasets that reflect human behavior. To obtain a machine learning model based on these data,researchers have developed multiple feature extraction methods. In this study, we investigate a method for automatically extracting universal and meaningful features that are applicable across similar time series-based learning tasks such as activity recognition and fall detection. We propose creating a sequence-to-sequence (seq2seq) model to perform this feature learning. Beside avoiding feature engineering, the meaningful features learned by the seq2seq model can also be utilized for semi-supervised learning. We evaluate both of these benefits on datasets collected from wearable and ambient sensors.