Abstract:Continual generalized category discovery has been introduced and studied in the literature as a method that aims to continuously discover and learn novel categories in incoming data batches while avoiding catastrophic forgetting of previously learned categories. A key component in addressing this challenge is the model's ability to separate novel samples, where Extreme Value Theory (EVT) has been effectively employed. In this work, we propose a novel method that integrates EVT with proxy anchors to define boundaries around proxies using a probability of inclusion function, enabling the rejection of unknown samples. Additionally, we introduce a novel EVT-based loss function to enhance the learned representation, achieving superior performance compared to other deep-metric learning methods in similar settings. Using the derived probability functions, novel samples are effectively separated from previously known categories. However, category discovery within these novel samples can sometimes overestimate the number of new categories. To mitigate this issue, we propose a novel EVT-based approach to reduce the model size and discard redundant proxies. We also incorporate experience replay and knowledge distillation mechanisms during the continual learning stage to prevent catastrophic forgetting. Experimental results demonstrate that our proposed approach outperforms state-of-the-art methods in continual generalized category discovery scenarios.