Abstract:High-risk artificial intelligence and machine learning classification tasks, such as healthcare diagnosis, require accurate and interpretable prediction models. However, classifier algorithms typically sacrifice individual case-accuracy for overall model accuracy, limiting analysis of class overlap areas regardless of task significance. The Adaptive Boosting meta-algorithm, which won the 2003 G\"odel Prize, analytically assigns higher weights to misclassified cases to reclassify. However, it relies on weaker base classifiers that are iteratively strengthened, limiting improvements from base classifiers. Combining visual and computational approaches enables selecting stronger base classifiers before boosting. This paper proposes moving boosting methodology from focusing on only misclassified cases to all cases in the class overlap areas using Computational and Interactive Visual Learning (CIVL) with a Human-in-the-Loop. It builds classifiers in lossless visualizations integrating human domain expertise and visual insights. A Divide and Classify process splits cases to simple and complex, classifying these individually through computational analysis and data visualization with lossless visualization spaces of Parallel Coordinates or other General Line Coordinates. After finding pure and overlap class areas simple cases in pure areas are classified, generating interpretable sub-models like decision rules in Propositional and First-order Logics. Only multidimensional cases in the overlap areas are losslessly visualized simplifying end-user cognitive tasks to identify difficult case patterns, including engineering features to form new classifiable patterns. Demonstration shows a perfectly accurate and losslessly interpretable model of the Iris dataset, and simulated data shows generalized benefits to accuracy and interpretability of models, increasing end-user confidence in discovered models.
Abstract:Insufficient amounts of available training data is a critical challenge for both development and deployment of artificial intelligence and machine learning (AI/ML) models. This paper proposes a unified approach to both synthetic data generation (SDG) and automated data labeling (ADL) with a unified SDG-ADL algorithm. SDG-ADL uses multidimensional (n-D) representations of data visualized losslessly with General Line Coordinates (GLCs), relying on reversible GLC properties to visualize n-D data in multiple GLCs. This paper demonstrates use of the new Circular Coordinates in Static and Dynamic forms, used with Parallel Coordinates and Shifted Paired Coordinates, since each GLC exemplifies unique data properties, such as interattribute n-D distributions and outlier detection. The approach is interactively implemented in computer software with the Dynamic Coordinates Visualization system (DCVis). Results with real data are demonstrated in case studies, evaluating impact on classifiers.