Abstract:In this work we demonstrate that generative adversarial networks (GANs) can be used to generate realistic pervasive changes in remote sensing imagery, even in an unpaired training setting. We investigate some transformation quality metrics based on deep embedding of the generated and real images which enable visualization and understanding of the training dynamics of the GAN, and may provide a useful measure in terms of quantifying how distinguishable the generated images are from real images. We also identify some artifacts introduced by the GAN in the generated images, which are likely to contribute to the differences seen between the real and generated samples in the deep embedding feature space even in cases where the real and generated samples appear perceptually similar.
Abstract:This paper introduces a new method of generating realistic pervasive changes in the context of evaluating the effectiveness of change detection algorithms in controlled settings. The method, a cycle-consistent adversarial network (CycleGAN), requires low quantities of training data to generate realistic changes. Here we show an application of CycleGAN in creating realistic snow-covered scenes of multispectral Sentinel-2 imagery, and demonstrate how these images can be used as a test bed for anomalous change detection algorithms.