Abstract:Adaptive task planning is fundamental to ensuring effective and seamless human-robot collaboration. This paper introduces a robot task planning framework that takes into account both human leading/following preferences and performance, specifically focusing on task allocation and scheduling in collaborative settings. We present a proactive task allocation approach with three primary objectives: enhancing team performance, incorporating human preferences, and upholding a positive human perception of the robot and the collaborative experience. Through a user study, involving an autonomous mobile manipulator robot working alongside participants in a collaborative scenario, we confirm that the task planning framework successfully attains all three intended goals, thereby contributing to the advancement of adaptive task planning in human-robot collaboration. This paper mainly focuses on the first two objectives, and we discuss the third objective, participants' perception of the robot, tasks, and collaboration in a companion paper.
Abstract:Achieving effective and seamless human-robot collaboration requires two key outcomes: enhanced team performance and fostering a positive human perception of both the robot and the collaboration. This paper investigates the capability of the proposed task planning framework to realize these objectives by integrating human leading/following preference and performance into its task allocation and scheduling processes. We designed a collaborative scenario wherein the robot autonomously collaborates with participants. The outcomes of the user study indicate that the proactive task planning framework successfully attains the aforementioned goals. We also explore the impact of participants' leadership and followership styles on their collaboration. The results reveal intriguing relationships between these factors, which warrant further investigation in future studies.
Abstract:With the introduction of collaborative robots, humans and robots can now work together in close proximity and share the same workspace. However, this collaboration presents various challenges that need to be addressed to ensure seamless cooperation between the agents. This paper focuses on task planning for human-robot collaboration, taking into account the human's performance and their preference for following or leading. Unlike conventional task allocation methods, the proposed system allows both the robot and human to select and assign tasks to each other. Our previous studies evaluated the proposed framework in a computer simulation environment. This paper extends the research by implementing the algorithm in a real scenario where a human collaborates with a Fetch mobile manipulator robot. We briefly describe the experimental setup, procedure and implementation of the planned user study. As a first step, in this paper, we report on a system evaluation study where the experimenter enacted different possible behaviours in terms of leader/follower preferences that can occur in a user study. Results show that the robot can adapt and respond appropriately to different human agent behaviours, enacted by the experimenter. A future user study will evaluate the system with human participants.