Abstract:In recent years, there has been a noticeable increase in cyberattacks using ransomware. Attackers use this malicious software to break into networks and harm computer systems. This has caused significant and lasting damage to various organizations, including government, private companies, and regular users. These attacks often lead to the loss or exposure of sensitive information, disruptions in normal operations, and persistent vulnerabilities. This paper focuses on a method for recognizing and identifying ransomware in computer networks. The approach relies on using machine learning algorithms and analyzing the patterns of network traffic. By collecting and studying this traffic, and then applying machine learning models, we can accurately identify and detect ransomware. The results of implementing this method show that machine learning algorithms can effectively pinpoint ransomware based on network traffic, achieving high levels of precision and accuracy.
Abstract:This paper describes an architecture for predicting the price of cryptocurrencies for the next seven days using the Adaptive Network Based Fuzzy Inference System (ANFIS). Historical data of cryptocurrencies and indexes that are considered are Bitcoin (BTC), Ethereum (ETH), Bitcoin Dominance (BTC.D), and Ethereum Dominance (ETH.D) in a daily timeframe. The methods used to teach the data are hybrid and backpropagation algorithms, as well as grid partition, subtractive clustering, and Fuzzy C-means clustering (FCM) algorithms, which are used in data clustering. The architectural performance designed in this paper has been compared with different inputs and neural network models in terms of statistical evaluation criteria. Finally, the proposed method can predict the price of digital currencies in a short time.
Abstract:Malware detection in IoT environments necessitates robust methodologies. This study introduces a CNN-LSTM hybrid model for IoT malware identification and evaluates its performance against established methods. Leveraging K-fold cross-validation, the proposed approach achieved 95.5% accuracy, surpassing existing methods. The CNN algorithm enabled superior learning model construction, and the LSTM classifier exhibited heightened accuracy in classification. Comparative analysis against prevalent techniques demonstrated the efficacy of the proposed model, highlighting its potential for enhancing IoT security. The study advocates for future exploration of SVMs as alternatives, emphasizes the need for distributed detection strategies, and underscores the importance of predictive analyses for a more powerful IOT security. This research serves as a platform for developing more resilient security measures in IoT ecosystems.
Abstract:This paper discusses the impact of the Internet on modern trading and the importance of data generated from these transactions for organizations to improve their marketing efforts. The paper uses the example of Divar, an online marketplace for buying and selling products and services in Iran, and presents a competition to predict the percentage of a car sales ad that would be published on the Divar website. Since the dataset provides a rich source of Persian text data, the authors use the Hazm library, a Python library designed for processing Persian text, and two state-of-the-art language models, mBERT and ParsBERT, to analyze it. The paper's primary objective is to compare the performance of mBERT and ParsBERT on the Divar dataset. The authors provide some background on data mining, Persian language, and the two language models, examine the dataset's composition and statistical features, and provide details on their fine-tuning and training configurations for both approaches. They present the results of their analysis and highlight the strengths and weaknesses of the two language models when applied to Persian text data. The paper offers valuable insights into the challenges and opportunities of working with low-resource languages such as Persian and the potential of advanced language models like BERT for analyzing such data. The paper also explains the data mining process, including steps such as data cleaning and normalization techniques. Finally, the paper discusses the types of machine learning problems, such as supervised, unsupervised, and reinforcement learning, and the pattern evaluation techniques, such as confusion matrix. Overall, the paper provides an informative overview of the use of language models and data mining techniques for analyzing text data in low-resource languages, using the example of the Divar dataset.