Abstract:Neural Architecture Search (NAS) methods autonomously discover high-accuracy neural network architectures, outperforming manually crafted ones. However, The NAS methods require high computational costs due to the high dimension search space and the need to train multiple candidate solutions. This paper introduces LCoDeepNEAT, an instantiation of Lamarckian genetic algorithms, which extends the foundational principles of the CoDeepNEAT framework. LCoDeepNEAT co-evolves CNN architectures and their respective final layer weights. The evaluation process of LCoDeepNEAT entails a single epoch of SGD, followed by the transference of the acquired final layer weights to the genetic representation of the network. In addition, it expedites the process of evolving by imposing restrictions on the architecture search space, specifically targeting architectures comprising just two fully connected layers for classification. Our method yields a notable improvement in the classification accuracy of candidate solutions throughout the evolutionary process, ranging from 2% to 5.6%. This outcome underscores the efficacy and effectiveness of integrating gradient information and evolving the last layer of candidate solutions within LCoDeepNEAT. LCoDeepNEAT is assessed across six standard image classification datasets and benchmarked against eight leading NAS methods. Results demonstrate LCoDeepNEAT's ability to swiftly discover competitive CNN architectures with fewer parameters, conserving computational resources, and achieving superior classification accuracy compared to other approaches.
Abstract:Vehicle re-identification (ReID) endeavors to associate vehicle images collected from a distributed network of cameras spanning diverse traffic environments. This task assumes paramount importance within the spectrum of vehicle-centric technologies, playing a pivotal role in deploying Intelligent Transportation Systems (ITS) and advancing smart city initiatives. Rapid advancements in deep learning have significantly propelled the evolution of vehicle ReID technologies in recent years. Consequently, undertaking a comprehensive survey of methodologies centered on deep learning for vehicle re-identification has become imperative and inescapable. This paper extensively explores deep learning techniques applied to vehicle ReID. It outlines the categorization of these methods, encompassing supervised and unsupervised approaches, delves into existing research within these categories, introduces datasets and evaluation criteria, and delineates forthcoming challenges and potential research directions. This comprehensive assessment examines the landscape of deep learning in vehicle ReID and establishes a foundation and starting point for future works. It aims to serve as a complete reference by highlighting challenges and emerging trends, fostering advancements and applications in vehicle ReID utilizing deep learning models.
Abstract:In this paper, we propose a new RWO-Sampling (Random Walk Over-Sampling) based on graphs for imbalanced datasets. In this method, two figures based on under-sampling and over-sampling methods are introduced to keep the proximity information, which is robust to noises and outliers. After the construction of the first graph on minority class, RWO-Sampling will be implemented on selected samples, and the rest of them will remain unchanged. The second graph is constructed for the majority class, and the samples in a low-density area (outliers) are removed. In the proposed method, examples of the majority class in a high-density area are selected, and the rest of them are eliminated. Furthermore, utilizing RWO-sampling, the boundary of minority class is increased though, the outliers are not raised. This method is tested, and the number of evaluation measures is compared to previous methods on nine continuous attribute datasets with different over-sampling rates. The experimental results were an indicator of the high efficiency and flexibility of the proposed method for the classification of imbalanced data.
Abstract:We propose a method of using a Weighted second-order cone programming twin support vector machine (WSOCP-TWSVM) for imbalanced data classification. This method constructs a graph based under-sampling method which is utilized to remove outliers and reduce the dispensable majority samples. Then, appropriate weights are set in order to decrease the impact of samples of the majority class and increase the effect of the minority class in the optimization formula of the classifier. These weights are embedded in the optimization problem of the Second Order Cone Programming (SOCP) Twin Support Vector Machine formulations. This method is tested, and its performance is compared to previous methods on standard datasets. Results of experiments confirm the feasibility and efficiency of the proposed method.
Abstract:In the area of data classification, the different classifiers have been developed by its own strengths and weaknesses. Among these classifiers, we propose a method which is based on the maximum margin between two classes. One of the main challenges in this area is dealt with noisy data. In this paper, our aim is to optimize the method of large margin classifier based on hyperdisk (LMC-HD) and incorporate it into quasi-support vector data description (QSVDD) method. In the proposed method, the bounding hypersphere is calculated based on the QSVDD method. So our convex class model is more robust compared with support vector machine (SVM) and less tight than LMC-HD. Large margin classifiers aim to maximize the margin and minimizing the risk. Sine our proposed method ignores the effect of outliers and noises, so this method has the widest margin compared with other large margin classifiers. In the end, we compare our proposed method with other popular large margin classifiers by the experiments on a set of standard data which indicates our results are more efficient than the others.