Abstract:Air pollution is a major problem today that causes serious damage to human health. Urban areas are the most affected by the degradation of air quality caused by anthropogenic gas emissions. Although there are multiple proposals for air quality monitoring, in most cases, two limitations are imposed: the impossibility of processing data in Near Real-Time (NRT) for remote sensing approaches and the impossibility of reaching areas of limited accessibility or low network coverage for ground data approaches. We propose a software architecture that efficiently combines complex event processing with remote sensing data from various satellite sensors to monitor air quality in NRT, giving support to decision-makers. We illustrate the proposed solution by calculating the air quality levels for several areas of Morocco and Spain, extracting and processing satellite information in NRT. This study also validates the air quality measured by ground stations and satellite sensor data.
Abstract:Major advances in telecommunications and the Internet of Things have given rise to numerous smart city scenarios in which smart services are provided. What was once a dream for the future has now become reality. However, the need to provide these smart services quickly, efficiently, in an interoperable manner and in real time is a cutting-edge technological challenge. Although some software architectures offer solutions in this area, these are often limited in terms of reusability and maintenance by independent modules, involving the need for system downtime when maintaining or evolving, as well as by a lack of standards in terms of the interoperability of their interface. In this paper, we propose a fully reusable microservice architecture, standardized through the use of the Web of things paradigm, and with high efficiency in real-time data processing, supported by complex event processing techniques. To illustrate the proposal, we present a fully reusable implementation of the microservices necessary for the deployment of the architecture in the field of air quality monitoring and alerting in smart ports. The performance evaluation of this architecture shows excellent results.
Abstract:The Internet of Things (IoT) has grown significantly in popularity, accompanied by increased capacity and lower cost of communications, and overwhelming development of technologies. At the same time, big data and real-time data analysis have taken on great importance and have been accompanied by unprecedented interest in sharing data among citizens, public administrations and other organisms, giving rise to what is known as the Collaborative Internet of Things. This growth in data and infrastructure must be accompanied by a software architecture that allows its exploitation. Although there are various proposals focused on the exploitation of the IoT at edge, fog and/or cloud levels, it is not easy to find a software solution that exploits the three tiers together, taking maximum advantage not only of the analysis of contextual and situational data at each tier, but also of two-way communications between adjacent ones. In this paper, we propose an architecture that solves these deficiencies by proposing novel technologies which are appropriate for managing the resources of each tier: edge, fog and cloud. In addition, the fact that two-way communications along the three tiers of the architecture is allowed considerably enriches the contextual and situational information in each layer, and substantially assists decision making in real time. The paper illustrates the proposed software architecture through a case study of respiratory disease surveillance in hospitals. As a result, the proposed architecture permits efficient communications between the different tiers responding to the needs of these types of IoT scenarios.