Abstract:A method for solving elasticity problems based on separable physics-informed neural networks (SPINN) in conjunction with the deep energy method (DEM) is presented. Numerical experiments have been carried out for a number of problems showing that this method has a significantly higher convergence rate and accuracy than the vanilla physics-informed neural networks (PINN) and even SPINN based on a system of partial differential equations (PDEs). In addition, using the SPINN in the framework of DEM approach it is possible to solve problems of the linear theory of elasticity on complex geometries, which is unachievable with the help of PINNs in frames of partial differential equations. Considered problems are very close to the industrial problems in terms of geometry, loading, and material parameters.
Abstract:A method is presented that allows to reduce a problem described by differential equations with initial and boundary conditions to the problem described only by differential equations. The advantage of using the modified problem for physics-informed neural networks (PINNs) methodology is that it becomes possible to represent the loss function in the form of a single term associated with differential equations, thus eliminating the need to tune the scaling coefficients for the terms related to boundary and initial conditions. The weighted loss functions respecting causality were modified and new weighted loss functions based on generalized functions are derived. Numerical experiments have been carried out for a number of problems, demonstrating the accuracy of the proposed methods.