Abstract:A fundamental task in science is to determine the underlying causal relations because it is the knowledge of this functional structure what leads to the correct interpretation of an effect given the apparent associations in the observed data. In this sense, Causal Discovery is a technique that tackles this challenge by analyzing the statistical properties of the constituent variables. In this work, we target the generalizability of the discovery method by following a reductionist approach that only involves two variables, i.e., the pairwise or bi-variate setting. We question the current (possibly misleading) baseline results on the basis that they were obtained through supervised learning, which is arguably contrary to this genuinely exploratory endeavor. In consequence, we approach this problem in an unsupervised way, using robust Mutual Information measures, and observing the impact of the different variable types, which is oftentimes ignored in the design of solutions. Thus, we provide a novel set of standard unbiased results that can serve as a reference to guide future discovery tasks in completely unknown environments.
Abstract:This paper describes the development of a causal diagnosis approach for troubleshooting an industrial environment on the basis of the technical language expressed in Return on Experience records. The proposed method leverages the vectorized linguistic knowledge contained in the distributed representation of a Large Language Model, and the causal associations entailed by the embedded failure modes and mechanisms of the industrial assets. The paper presents the elementary but essential concepts of the solution, which is conceived as a causality-aware retrieval augmented generation system, and illustrates them experimentally on a real-world Predictive Maintenance setting. Finally, it discusses avenues of improvement for the maturity of the utilized causal technology to meet the robustness challenges of increasingly complex scenarios in the industry.