Abstract:As smart cities begin to materialize, the role of Unmanned Aerial Vehicles (UAVs) and their reliability becomes increasingly important. One aspect of reliability relates to Condition Monitoring (CM), where Machine Learning (ML) models are leveraged to identify abnormal and adverse conditions. Given the resource-constrained nature of next-generation edge networks, the utilization of precious network resources must be minimized. This work explores the optimization of network resources for ML-based UAV CM frameworks. The developed framework uses experimental data and varies the feature extraction aggregation interval to optimize ML model selection. Additionally, by leveraging dimensionality reduction techniques, there is a 99.9% reduction in network resource consumption.
Abstract:Unmanned Aerial Vehicles (UAVs) will be critical infrastructural components of future smart cities. In order to operate efficiently, UAV reliability must be ensured by constant monitoring for faults and failures. To this end, the work presented in this paper leverages signal processing and Machine Learning (ML) methods to analyze the data of a comprehensive vibrational analysis to determine the presence of rotor blade defects during pre and post-flight operation. With the help of dimensionality reduction techniques, the Random Forest algorithm exhibited the best performance and detected defective rotor blades perfectly. Additionally, a comprehensive analysis of the impact of various feature subsets is presented to gain insight into the factors affecting the model's classification decision process.