Abstract:Constraint Programming (CP) and Machine Learning (ML) face challenges in text generation due to CP's struggle with implementing "meaning'' and ML's difficulty with structural constraints. This paper proposes a solution by combining both approaches and embedding a Large Language Model (LLM) in CP. The LLM handles word generation and meaning, while CP manages structural constraints. This approach builds on GenCP, an improved version of On-the-fly Constraint Programming Search (OTFS) using LLM-generated domains. Compared to Beam Search (BS), a standard NLP method, this combined approach (GenCP with LLM) is faster and produces better results, ensuring all constraints are satisfied. This fusion of CP and ML presents new possibilities for enhancing text generation under constraints.
Abstract:Constrained text generation remains a challenging task, particularly when dealing with hard constraints. Traditional Natural Language Processing (NLP) approaches prioritize generating meaningful and coherent output. Also, the current state-of-the-art methods often lack the expressiveness and constraint satisfaction capabilities to handle such tasks effectively. This paper presents the Constraints First Framework to remedy this issue. This framework considers a constrained text generation problem as a discrete combinatorial optimization problem. It is solved by a constraint programming method that combines linguistic properties (e.g., n-grams or language level) with other more classical constraints (e.g., the number of characters, syllables, or words). Eventually, a curation phase allows for selecting the best-generated sentences according to perplexity using a large language model. The effectiveness of this approach is demonstrated by tackling a new more tediously constrained text generation problem: the iconic RADNER sentences problem. This problem aims to generate sentences respecting a set of quite strict rules defined by their use in vision and clinical research. Thanks to our CP-based approach, many new strongly constrained sentences have been successfully generated in an automatic manner. This highlights the potential of our approach to handle unreasonably constrained text generation scenarios.
Abstract:This paper presents NgramMarkov, a variant of the Markov constraints. It is dedicated to text generation in constraint programming (CP). It involves a set of n-grams (i.e., sequence of n words) associated with probabilities given by a large language model (LLM). It limits the product of the probabilities of the n-gram of a sentence. The propagator of this constraint can be seen as an extension of the ElementaryMarkov constraint propagator, incorporating the LLM distribution instead of the maximum likelihood estimation of n-grams. It uses a gliding threshold, i.e., it rejects n-grams whose local probabilities are too low, to guarantee balanced solutions. It can also be combined with a "look-ahead" approach to remove n-grams that are very unlikely to lead to acceptable sentences for a fixed-length horizon. This idea is based on the MDDMarkovProcess constraint propagator, but without explicitly using an MDD (Multi-Valued Decision Diagram). The experimental results show that the generated text is valued in a similar way to the LLM perplexity function. Using this new constraint dramatically reduces the number of candidate sentences produced, improves computation times, and allows larger corpora or smaller n-grams to be used. A real-world problem has been solved for the first time using 4-grams instead of 5-grams.
Abstract:This paper introduces a new approach to generating strongly constrained texts. We consider standardized sentence generation for the typical application of vision screening. To solve this problem, we formalize it as a discrete combinatorial optimization problem and utilize multivalued decision diagrams (MDD), a well-known data structure to deal with constraints. In our context, one key strength of MDD is to compute an exhaustive set of solutions without performing any search. Once the sentences are obtained, we apply a language model (GPT-2) to keep the best ones. We detail this for English and also for French where the agreement and conjugation rules are known to be more complex. Finally, with the help of GPT-2, we get hundreds of bona-fide candidate sentences. When compared with the few dozen sentences usually available in the well-known vision screening test (MNREAD), this brings a major breakthrough in the field of standardized sentence generation. Also, as it can be easily adapted for other languages, it has the potential to make the MNREAD test even more valuable and usable. More generally, this paper highlights MDD as a convincing alternative for constrained text generation, especially when the constraints are hard to satisfy, but also for many other prospects.