Abstract:Many reinforcement learning algorithms, particularly those that rely on return estimates for policy improvement, can suffer from poor sample efficiency and training instability due to high-variance return estimates. In this paper we leverage new results from off-policy evaluation; it has recently been shown that well-designed behaviour policies can be used to collect off-policy data for provably lower variance return estimates. This result is surprising as it means collecting data on-policy is not variance optimal. We extend this key insight to the online reinforcement learning setting, where both policy evaluation and improvement are interleaved to learn optimal policies. Off-policy RL has been well studied (e.g., IMPALA), with correct and truncated importance weighted samples for de-biasing and managing variance appropriately. Generally these approaches are concerned with reconciling data collected from multiple workers in parallel, while the policy is updated asynchronously, mismatch between the workers and policy is corrected in a mathematically sound way. Here we consider only one worker - the behaviour policy, which is used to collect data for policy improvement, with provably lower variance return estimates. In our experiments we extend two policy-gradient methods with this regime, demonstrating better sample efficiency and performance over a diverse set of environments.
Abstract:Shielding is a popular technique for achieving safe reinforcement learning (RL). However, classical shielding approaches come with quite restrictive assumptions making them difficult to deploy in complex environments, particularly those with continuous state or action spaces. In this paper we extend the more versatile approximate model-based shielding (AMBS) framework to the continuous setting. In particular we use Safety Gym as our test-bed, allowing for a more direct comparison of AMBS with popular constrained RL algorithms. We also provide strong probabilistic safety guarantees for the continuous setting. In addition, we propose two novel penalty techniques that directly modify the policy gradient, which empirically provide more stable convergence in our experiments.




Abstract:Reinforcement learning (RL) has shown great potential for solving complex tasks in a variety of domains. However, applying RL to safety-critical systems in the real-world is not easy as many algorithms are sample-inefficient and maximising the standard RL objective comes with no guarantees on worst-case performance. In this paper we propose approximate model-based shielding (AMBS), a principled look-ahead shielding algorithm for verifying the performance of learned RL policies w.r.t. a set of given safety constraints. Our algorithm differs from other shielding approaches in that it does not require prior knowledge of the safety-relevant dynamics of the system. We provide a strong theoretical justification for AMBS and demonstrate superior performance to other safety-aware approaches on a set of Atari games with state-dependent safety-labels.
Abstract:Balancing exploration and conservatism in the constrained setting is an important problem if we are to use reinforcement learning for meaningful tasks in the real world. In this paper, we propose a principled algorithm for safe exploration based on the concept of shielding. Previous approaches to shielding assume access to a safety-relevant abstraction of the environment or a high-fidelity simulator. Instead, our work is based on latent shielding - another approach that leverages world models to verify policy roll-outs in the latent space of a learned dynamics model. Our novel algorithm builds on this previous work, using safety critics and other additional features to improve the stability and farsightedness of the algorithm. We demonstrate the effectiveness of our approach by running experiments on a small set of Atari games with state dependent safety labels. We present preliminary results that show our approximate shielding algorithm effectively reduces the rate of safety violations, and in some cases improves the speed of convergence and quality of the final agent.