Abstract:Shielding is a popular technique for achieving safe reinforcement learning (RL). However, classical shielding approaches come with quite restrictive assumptions making them difficult to deploy in complex environments, particularly those with continuous state or action spaces. In this paper we extend the more versatile approximate model-based shielding (AMBS) framework to the continuous setting. In particular we use Safety Gym as our test-bed, allowing for a more direct comparison of AMBS with popular constrained RL algorithms. We also provide strong probabilistic safety guarantees for the continuous setting. In addition, we propose two novel penalty techniques that directly modify the policy gradient, which empirically provide more stable convergence in our experiments.
Abstract:Reinforcement learning (RL) has shown great potential for solving complex tasks in a variety of domains. However, applying RL to safety-critical systems in the real-world is not easy as many algorithms are sample-inefficient and maximising the standard RL objective comes with no guarantees on worst-case performance. In this paper we propose approximate model-based shielding (AMBS), a principled look-ahead shielding algorithm for verifying the performance of learned RL policies w.r.t. a set of given safety constraints. Our algorithm differs from other shielding approaches in that it does not require prior knowledge of the safety-relevant dynamics of the system. We provide a strong theoretical justification for AMBS and demonstrate superior performance to other safety-aware approaches on a set of Atari games with state-dependent safety-labels.
Abstract:Balancing exploration and conservatism in the constrained setting is an important problem if we are to use reinforcement learning for meaningful tasks in the real world. In this paper, we propose a principled algorithm for safe exploration based on the concept of shielding. Previous approaches to shielding assume access to a safety-relevant abstraction of the environment or a high-fidelity simulator. Instead, our work is based on latent shielding - another approach that leverages world models to verify policy roll-outs in the latent space of a learned dynamics model. Our novel algorithm builds on this previous work, using safety critics and other additional features to improve the stability and farsightedness of the algorithm. We demonstrate the effectiveness of our approach by running experiments on a small set of Atari games with state dependent safety labels. We present preliminary results that show our approximate shielding algorithm effectively reduces the rate of safety violations, and in some cases improves the speed of convergence and quality of the final agent.