Abstract:Deep learning methods have emerged as powerful tools for analyzing histopathological images, but current methods are often specialized for specific domains and software environments, and few open-source options exist for deploying models in an interactive interface. Experimenting with different deep learning approaches typically requires switching software libraries and reprocessing data, reducing the feasibility and practicality of experimenting with new architectures. We developed a flexible deep learning library for histopathology called Slideflow, a package which supports a broad array of deep learning methods for digital pathology and includes a fast whole-slide interface for deploying trained models. Slideflow includes unique tools for whole-slide image data processing, efficient stain normalization and augmentation, weakly-supervised whole-slide classification, uncertainty quantification, feature generation, feature space analysis, and explainability. Whole-slide image processing is highly optimized, enabling whole-slide tile extraction at 40X magnification in 2.5 seconds per slide. The framework-agnostic data processing pipeline enables rapid experimentation with new methods built with either Tensorflow or PyTorch, and the graphical user interface supports real-time visualization of slides, predictions, heatmaps, and feature space characteristics on a variety of hardware devices, including ARM-based devices such as the Raspberry Pi.
Abstract:Artificial intelligence (AI) methods including deep neural networks can provide rapid molecular classification of tumors from routine histology with accuracy that can match or exceed human pathologists. Discerning how neural networks make their predictions remains a significant challenge, but explainability tools can help provide insights into what models have learned when corresponding histologic features are poorly understood. Conditional generative adversarial networks (cGANs) are AI models that generate synthetic images and illustrate subtle differences between image classes. Here, we describe the use of a cGAN for explaining models trained to classify molecularly-subtyped tumors, exposing associated histologic features. We leverage cGANs to create class- and layer-blending visualizations to improve understanding of subtype morphology. Finally, we demonstrate the potential use of synthetic histology for augmenting pathology trainee education and show that clear, intuitive cGAN visualizations can reinforce and improve human understanding of histologic manifestations of tumor biology