Abstract:This paper investigates the problem of domain adaptation for diabetic retinopathy (DR) grading. We learn invariant target-domain features by defining a novel self-supervised task based on retinal vessel image reconstructions, inspired by medical domain knowledge. Then, a benchmark of current state-of-the-art unsupervised domain adaptation methods on the DR problem is provided. It can be shown that our approach outperforms existing domain adaption strategies. Furthermore, when utilizing entire training data in the target domain, we are able to compete with several state-of-the-art approaches in final classification accuracy just by applying standard network architectures and using image-level labels.
Abstract:In this paper we provide a categorisation and implementation of digital ink features for behaviour characterisation. Based on four feature sets taken from literature, we provide a categorisation in different classes of syntactic and semantic features. We implemented a publicly available framework to calculate these features and show its deployment in the use case of analysing cognitive assessments performed using a digital pen.