Abstract:In the present work we use maximum entropy methods to derive several theorems in probabilistic number theory, including a version of the Hardy-Ramanujan Theorem. We also provide a theoretical argument explaining the experimental observations of Y.-H. He about the learnability of primes, and posit that the Erd\H{o}s-Kac law would very unlikely be discovered by current machine learning techniques. Numerical experiments that we perform corroborate our theoretical findings.
Abstract:In this note we use the State of the Union Address dataset from Kaggle to make some surprising (and some not so surprising) observations pertaining to the general timeline of American history, and the character and nature of the addresses themselves. Our main approach is using vector embeddings, such as BERT (DistilBERT) and GPT-2. While it is widely believed that BERT (and its variations) is most suitable for NLP classification tasks, we find out that GPT-2 in conjunction with nonlinear dimension reduction methods such as UMAP provide better separation and stronger clustering. This makes GPT-2 + UMAP an interesting alternative. In our case, no model fine-tuning is required, and the pre-trained out-of-the-box GPT-2 model is enough. We also used a fine-tuned DistilBERT model for classification (detecting which president delivered which address), with very good results (accuracy 93% - 95% depending on the run). All computations can be replicated by using the accompanying code on GitHub.
Abstract:GraNNI (Grassmannians for Nearest Neighbours Identification) a new algorithm to solve the problem of affine registration is proposed. The algorithm is based on the Grassmannian of $k$--dimensional planes in $\mathbb{R}^n$ and minimizing the Frobenius norm between the two elements of the Grassmannian. The Quadratic Assignment Problem (QAP) is used to find the matching. The results of the experiments show that the algorithm is more robust to noise and point discrepancy in point clouds than previous approaches.
Abstract:In this note, we propose an approach for initializing the Iterative Closest Point (ICP) algorithm that allows us to apply ICP to unlabelled point clouds that are related by rigid transformations. We also give bounds on the robustness of our approach to noise. Numerical experiments confirm our theoretical findings.