Abstract:This paper introduces RACER, the Rational Artificial Intelligence Car-following model Enhanced by Reality, a cutting-edge deep learning car-following model, that satisfies partial derivative constraints, designed to predict Adaptive Cruise Control (ACC) driving behavior while staying theoretically feasible. Unlike conventional models, RACER effectively integrates Rational Driving Constraints (RDCs), crucial tenets of actual driving, resulting in strikingly accurate and realistic predictions. Against established models like the Optimal Velocity Relative Velocity (OVRV), a car-following Neural Network (NN), and a car-following Physics-Informed Neural Network (PINN), RACER excels across key metrics, such as acceleration, velocity, and spacing. Notably, it displays a perfect adherence to the RDCs, registering zero violations, in stark contrast to other models. This study highlights the immense value of incorporating physical constraints within AI models, especially for augmenting safety measures in transportation. It also paves the way for future research to test these models against human driving data, with the potential to guide safer and more rational driving behavior. The versatility of the proposed model, including its potential to incorporate additional derivative constraints and broader architectural applications, enhances its appeal and broadens its impact within the scientific community.