Northwestern University
Abstract:In recent years, there has been a revolution in data-driven policing. With that has come scrutiny on how bias in historical data affects algorithmic decision making. In this exploratory work, we introduce a debiasing technique for place-based algorithmic patrol management systems. We show that the technique efficiently eliminates racially biased features while retaining high accuracy in the models. Finally, we provide a lengthy list of potential future research in the realm of fairness and data-driven policing which this work uncovered.
Abstract:A politically informed citizenry is imperative for a welldeveloped democracy. While the US government has pursued policies for open data, these efforts have been insufficient in achieving an open government because only people with technical and domain knowledge can access information in the data. In this work, we conduct user interviews to identify wants and needs among stakeholders. We further use this information to sketch out the foundational requirements for a functional political information technical system.