Abstract:Forecasting indoor temperatures is important to achieve efficient control of HVAC systems. In this task, the limited data availability presents a challenge as most of the available data is acquired during standard operation where extreme scenarios and transitory regimes such as major temperature increases or decreases are de-facto excluded. Acquisition of such data requires significant energy consumption and a dedicated facility, hindering the quantity and diversity of available data. Cost related constraints however do not allow for continuous year-around acquisition. To address this, we investigate the efficacy of data augmentation techniques leveraging SoTA AI-based methods for synthetic data generation. Inspired by practical and experimental motivations, we explore fusion strategies of real and synthetic data to improve forecasting models. This approach alleviates the need for continuously acquiring extensive time series data, especially in contexts involving repetitive heating and cooling cycles in buildings. In our evaluation 1) we assess the performance of synthetic data generators independently, particularly focusing on SoTA AI-based methods; 2) we measure the utility of incorporating synthetically augmented data in a subsequent forecasting tasks where we employ a simple model in two distinct scenarios: 1) we first examine an augmentation technique that combines real and synthetically generated data to expand the training dataset, 2) we delve into utilizing synthetic data to tackle dataset imbalances. Our results highlight the potential of synthetic data augmentation in enhancing forecasting accuracy while mitigating training variance. Through empirical experiments, we show significant improvements achievable by integrating synthetic data, thereby paving the way for more robust forecasting models in low-data regime.
Abstract:A thorough regulation of building energy systems translates in relevant energy savings and in a better comfort for the occupants. Algorithms to predict the thermal state of a building on a certain time horizon with a good confidence are essential for the implementation of effective control systems. This work presents a global Transformer architecture for indoor temperature forecasting in multi-room buildings, aiming at optimizing energy consumption and reducing greenhouse gas emissions associated with HVAC systems. Recent advancements in deep learning have enabled the development of more sophisticated forecasting models compared to traditional feedback control systems. The proposed global Transformer architecture can be trained on the entire dataset encompassing all rooms, eliminating the need for multiple room-specific models, significantly improving predictive performance, and simplifying deployment and maintenance. Notably, this study is the first to apply a Transformer architecture for indoor temperature forecasting in multi-room buildings. The proposed approach provides a novel solution to enhance the accuracy and efficiency of temperature forecasting, serving as a valuable tool to optimize energy consumption and decrease greenhouse gas emissions in the building sector.