Abstract:The electroretinogram (ERG) is a clinical test that records the retina's electrical response to light. The ERG is a promising way to study different neurodevelopmental and neurodegenerative disorders, including autism spectrum disorder (ASD) - a neurodevelopmental condition that impacts language, communication, and reciprocal social interactions. However, in heterogeneous populations, such as ASD, where the ability to collect large datasets is limited, the application of artificial intelligence (AI) is complicated. Synthetic ERG signals generated from real ERG recordings carry similar information as natural ERGs and, therefore, could be used as an extension for natural data to increase datasets so that AI applications can be fully utilized. As proof of principle, this study presents a Generative Adversarial Network capable of generating synthetic ERG signals of children with ASD and typically developing control individuals. We applied a Time Series Transformer and Visual Transformer with Continuous Wavelet Transform to enhance classification results on the extended synthetic signals dataset. This approach may support classification models in related psychiatric conditions where the ERG may help classify disorders.
Abstract:Optical coherence tomography (OCT) is a non-invasive imaging technique with extensive clinical applications in ophthalmology. OCT enables the visualization of the retinal layers, playing a vital role in the early detection and monitoring of retinal diseases. OCT uses the principle of light wave interference to create detailed images of the retinal microstructures, making it a valuable tool for diagnosing ocular conditions. This work presents an open-access OCT dataset (OCTDL) comprising over 1600 high-resolution OCT images labeled according to disease group and retinal pathology. The dataset consists of OCT records of patients with Age-related Macular Degeneration (AMD), Diabetic Macular Edema (DME), Epiretinal Membrane (ERM), Retinal Artery Occlusion (RAO), Retinal Vein Occlusion (RVO), and Vitreomacular Interface Disease (VID). The images were acquired with an Optovue Avanti RTVue XR using raster scanning protocols with dynamic scan length and image resolution. Each retinal b-scan was acquired by centering on the fovea and interpreted and cataloged by an experienced retinal specialist. In this work, we applied Deep Learning classification techniques to this new open-access dataset.