Abstract:Electricity load consumption may be extremely complex in terms of profile patterns, as it depends on a wide range of human factors, and it is often correlated with several exogenous factors, such as the availability of renewable energy and the weather conditions. The first goal of this paper is to investigate the performance of a large selection of different types of forecasting models in predicting the electricity load consumption within the short time horizon of a day or few hours ahead. Such forecasts may be rather useful for the energy management of individual residential buildings or small energy communities. In particular, we introduce persistence models, standard auto-regressive-based machine learning models, and more advanced deep learning models. The second goal of this paper is to introduce two alternative modeling approaches that are simpler in structure while they take into account domain specific knowledge, as compared to the previously mentioned black-box modeling techniques. In particular, we consider the persistence-based auto-regressive model (PAR) and the seasonal persistence-based regressive model (SPR), priorly introduced by the authors. In this paper, we specifically tailor these models to accommodate the generation of hourly forecasts. The introduced models and the induced comparative analysis extend prior work of the authors which was restricted to day-ahead forecasts. We observed a 15-30% increase in the prediction accuracy of the newly introduced hourly-based forecasting models over existing approaches.
Abstract:The flexibility in electricity consumption and production in communities of residential buildings, including those with renewable energy sources and energy storage (a.k.a., prosumers), can effectively be utilized through the advancement of short-term demand response mechanisms. It is known that flexibility can further be increased if demand response is performed at the level of communities of prosumers, since aggregated groups can better coordinate electricity consumption. However, the effectiveness of such short-term optimization is highly dependent on the accuracy of electricity load forecasts both for each building as well as for the whole community. Structural variations in the electricity load profile can be associated with different exogenous factors, such as weather conditions, calendar information and day of the week, as well as user behavior. In this paper, we review a wide range of electricity load forecasting techniques, that can provide significant assistance in optimizing load consumption in prosumer communities. We present and test artificial intelligence (AI) powered short-term load forecasting methodologies that operate with black-box time series models, such as Facebook's Prophet and Long Short-term Memory (LSTM) models; season-based SARIMA and smoothing Holt-Winters models; and empirical regression-based models that utilize domain knowledge. The integration of weather forecasts into data-driven time series forecasts is also tested. Results show that the combination of persistent and regression terms (adapted to the load forecasting task) achieves the best forecast accuracy.