Abstract:In previous work, the IPMSRL environment (Integrated Platform Management System Reinforcement Learning environment) was developed with the aim of training defensive RL agents in a simulator representing a subset of an IPMS on a maritime vessel under a cyber-attack. This paper extends the use of IPMSRL to enhance realism including the additional dynamics of false positive alerts and alert delay. Applying curriculum learning, in the most difficult environment tested, resulted in an episode reward mean increasing from a baseline result of -2.791 to -0.569. Applying action masking, in the most difficult environment tested, resulted in an episode reward mean increasing from a baseline result of -2.791 to -0.743. Importantly, this level of performance was reached in less than 1 million timesteps, which was far more data efficient than vanilla PPO which reached a lower level of performance after 2.5 million timesteps. The training method which resulted in the highest level of performance observed in this paper was a combination of the application of curriculum learning and action masking, with a mean episode reward of 0.137. This paper also introduces a basic hardcoded defensive agent encoding a representation of cyber security best practice, which provides context to the episode reward mean figures reached by the RL agents. The hardcoded agent managed an episode reward mean of -1.895. This paper therefore shows that applications of curriculum learning and action masking, both independently and in tandem, present a way to overcome the complex real-world dynamics that are present in operational technology cyber security threat remediation.
Abstract:This paper demonstrates the potential for autonomous cyber defence to be applied on industrial control systems and provides a baseline environment to further explore Multi-Agent Reinforcement Learning's (MARL) application to this problem domain. It introduces a simulation environment, IPMSRL, of a generic Integrated Platform Management System (IPMS) and explores the use of MARL for autonomous cyber defence decision-making on generic maritime based IPMS Operational Technology (OT). OT cyber defensive actions are less mature than they are for Enterprise IT. This is due to the relatively brittle nature of OT infrastructure originating from the use of legacy systems, design-time engineering assumptions, and lack of full-scale modern security controls. There are many obstacles to be tackled across the cyber landscape due to continually increasing cyber-attack sophistication and the limitations of traditional IT-centric cyber defence solutions. Traditional IT controls are rarely deployed on OT infrastructure, and where they are, some threats aren't fully addressed. In our experiments, a shared critic implementation of Multi Agent Proximal Policy Optimisation (MAPPO) outperformed Independent Proximal Policy Optimisation (IPPO). MAPPO reached an optimal policy (episode outcome mean of 1) after 800K timesteps, whereas IPPO was only able to reach an episode outcome mean of 0.966 after one million timesteps. Hyperparameter tuning greatly improved training performance. Across one million timesteps the tuned hyperparameters reached an optimal policy whereas the default hyperparameters only managed to win sporadically, with most simulations resulting in a draw. We tested a real-world constraint, attack detection alert success, and found that when alert success probability is reduced to 0.75 or 0.9, the MARL defenders were still able to win in over 97.5% or 99.5% of episodes, respectively.