Abstract:The integration of Internet of Things (IoT) technology in various domains has led to operational advancements, but it has also introduced new vulnerabilities to cybersecurity threats, as evidenced by recent widespread cyberattacks on IoT devices. Intrusion detection systems are often reactive, triggered by specific patterns or anomalies observed within the network. To address this challenge, this work proposes a proactive approach to anticipate and preemptively mitigate malicious activities, aiming to prevent potential damage before it occurs. This paper proposes an innovative intrusion prediction framework empowered by Pre-trained Large Language Models (LLMs). The framework incorporates two LLMs: a fine-tuned Bidirectional and AutoRegressive Transformers (BART) model for predicting network traffic and a fine-tuned Bidirectional Encoder Representations from Transformers (BERT) model for evaluating the predicted traffic. By harnessing the bidirectional capabilities of BART the framework then identifies malicious packets among these predictions. Evaluated using the CICIoT2023 IoT attack dataset, our framework showcases a notable enhancement in predictive performance, attaining an impressive 98% overall accuracy, providing a powerful response to the cybersecurity challenges that confront IoT networks.
Abstract:In recent years, numerous large-scale cyberattacks have exploited Internet of Things (IoT) devices, a phenomenon that is expected to escalate with the continuing proliferation of IoT technology. Despite considerable efforts in attack detection, intrusion detection systems remain mostly reactive, responding to specific patterns or observed anomalies. This work proposes a proactive approach to anticipate and mitigate malicious activities before they cause damage. This paper proposes a novel network intrusion prediction framework that combines Large Language Models (LLMs) with Long Short Term Memory (LSTM) networks. The framework incorporates two LLMs in a feedback loop: a fine-tuned Generative Pre-trained Transformer (GPT) model for predicting network traffic and a fine-tuned Bidirectional Encoder Representations from Transformers (BERT) for evaluating the predicted traffic. The LSTM classifier model then identifies malicious packets among these predictions. Our framework, evaluated on the CICIoT2023 IoT attack dataset, demonstrates a significant improvement in predictive capabilities, achieving an overall accuracy of 98%, offering a robust solution to IoT cybersecurity challenges.