Abstract:In the rapidly evolving domain of electrical power systems, the Volt-VAR optimization (VVO) is increasingly critical, especially with the burgeoning integration of renewable energy sources. Traditional approaches to learning-based VVO in expansive and dynamically changing power systems are often hindered by computational complexities. To address this challenge, our research presents a novel framework that harnesses the potential of Deep Reinforcement Learning (DRL), specifically utilizing the Importance Weighted Actor-Learner Architecture (IMPALA) algorithm, executed on the RAY platform. This framework, built upon RLlib-an industry-standard in Reinforcement Learning-ingeniously capitalizes on the distributed computing capabilities and advanced hyperparameter tuning offered by RAY. This design significantly expedites the exploration and exploitation phases in the VVO solution space. Our empirical results demonstrate that our approach not only surpasses existing DRL methods in achieving superior reward outcomes but also manifests a remarkable tenfold reduction in computational requirements. The integration of our DRL agent with the RAY platform facilitates the creation of RLlib-IMPALA, a novel framework that efficiently uses RAY's resources to improve system adaptability and control. RLlib-IMPALA leverages RAY's toolkit to enhance analytical capabilities and significantly speeds up training to become more than 10 times faster than other state-of-the-art DRL methods.