Abstract:Machine learning methods have been adopted in the literature as contenders to conventional methods to solve the energy time series forecasting (TSF) problems. Recently, deep learning methods have been emerged in the artificial intelligence field attaining astonishing performance in a wide range of applications. Yet, the evidence about their performance in to solve the energy TSF problems, in terms of accuracy and computational requirements, is scanty. Most of the review articles that handle the energy TSF problem are systematic reviews, however, a qualitative and quantitative study for the energy TSF problem is not yet available in the literature. The purpose of this paper is twofold, first it provides a comprehensive analytical assessment for conventional,machine learning, and deep learning methods that can be utilized to solve various energy TSF problems. Second, the paper carries out an empirical assessment for many selected methods through three real-world datasets. These datasets related to electrical energy consumption problem, natural gas problem, and electric power consumption of an individual household problem.The first two problems are univariate TSF and the third problem is a multivariate TSF. Com-pared to both conventional and machine learning contenders, the deep learning methods attain a significant improvement in terms of accuracy and forecasting horizons examined. In the mean-time, their computational requirements are notably greater than other contenders. Eventually,the paper identifies a number of challenges, potential research directions, and recommendations to the research community may serve as a basis for further research in the energy forecasting domain.
Abstract:Recently, with the rapid development of technology, there are a lot of applications require to achieve low-cost learning. However the computational power of classical artificial neural networks, they are not capable to provide low-cost learning. In contrast, quantum neural networks may be representing a good computational alternate to classical neural network approaches, based on the computational power of quantum bit (qubit) over the classical bit. In this paper we present a new computational approach to the quantum perceptron neural network can achieve learning in low-cost computation. The proposed approach has only one neuron can construct self-adaptive activation operators capable to accomplish the learning process in a limited number of iterations and, thereby, reduce the overall computational cost. The proposed approach is capable to construct its own set of activation operators to be applied widely in both quantum and classical applications to overcome the linearity limitation of classical perceptron. The computational power of the proposed approach is illustrated via solving variety of problems where promising and comparable results are given.