Abstract:Causal networks are widely used in many fields to model the complex relationships between variables. A recent approach has sought to construct causal networks by leveraging the wisdom of crowds through the collective participation of humans. While this can yield detailed causal networks that model the underlying phenomena quite well, it requires a large number of individuals with domain understanding. We adopt a different approach: leveraging the causal knowledge that large language models, such as OpenAI's GPT-4, have learned by ingesting massive amounts of literature. Within a dedicated visual analytics interface, called CausalChat, users explore single variables or variable pairs recursively to identify causal relations, latent variables, confounders, and mediators, constructing detailed causal networks through conversation. Each probing interaction is translated into a tailored GPT-4 prompt and the response is conveyed through visual representations which are linked to the generated text for explanations. We demonstrate the functionality of CausalChat across diverse data contexts and conduct user studies involving both domain experts and laypersons.
Abstract:Causal networks are widely used in many fields, including epidemiology, social science, medicine, and engineering, to model the complex relationships between variables. While it can be convenient to algorithmically infer these models directly from observational data, the resulting networks are often plagued with erroneous edges. Auditing and correcting these networks may require domain expertise frequently unavailable to the analyst. We propose the use of large language models such as ChatGPT as an auditor for causal networks. Our method presents ChatGPT with a causal network, one edge at a time, to produce insights about edge directionality, possible confounders, and mediating variables. We ask ChatGPT to reflect on various aspects of each causal link and we then produce visualizations that summarize these viewpoints for the human analyst to direct the edge, gather more data, or test further hypotheses. We envision a system where large language models, automated causal inference, and the human analyst and domain expert work hand in hand as a team to derive holistic and comprehensive causal models for any given case scenario. This paper presents first results obtained with an emerging prototype.